Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(10): 1651-1672, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34888656

RESUMEN

Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a CAG expansion in the huntingtin gene (HTT). Post-translational modifications of huntingtin protein (HTT), such as phosphorylation, acetylation and ubiquitination, have been implicated in HD pathogenesis. Arginine methylation/dimethylation is an important modification with an emerging role in neurodegeneration; however, arginine methylation of HTT remains largely unexplored. Here we report nearly two dozen novel arginine methylation/dimethylation sites on the endogenous HTT from human and mouse brain and human cells suggested by mass spectrometry with data-dependent acquisition. Targeted quantitative mass spectrometry identified differential arginine methylation at specific sites in HD patient-derived striatal precursor cell lines compared to normal controls. We found that HTT can interact with several type I protein arginine methyltransferases (PRMTs) via its N-terminal domain. Using a combination of in vitro methylation and cell-based experiments, we identified PRMT4 (CARM1) and PRMT6 as major enzymes methylating HTT at specific arginines. Alterations of these methylation sites had a profound effect on biochemical properties of HTT rendering it less soluble in cells and affected its liquid-liquid phase separation and phase transition patterns in vitro. We found that expanded HTT 1-586 fragment can form liquid-like assemblies, which converted into solid-like assemblies when the R200/205 methylation sites were altered. Methyl-null alterations increased HTT toxicity to neuronal cells, while overexpression of PRMT 4 and 6 was beneficial for neuronal survival. Thus, arginine methylation pathways that involve specific HTT-modifying PRMT enzymes and modulate HTT biochemical and toxic properties could provide targets for HD-modifying therapies.


Asunto(s)
Arginina , Enfermedad de Huntington , Animales , Arginina/genética , Arginina/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Metilación , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Solubilidad
2.
Glia ; 69(5): 1241-1250, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33400321

RESUMEN

Astrocytes are in control of metabolic homeostasis in the brain and support and modulate neuronal function in various ways. Astrocyte-derived l-lactate (lactate) is thought to play a dual role as a metabolic and a signaling molecule in inter-cellular communication. The biological significance of lactate release from astrocytes is poorly understood, largely because the tools to manipulate lactate levels in vivo are limited. We therefore developed new viral vectors for astrocyte-specific expression of a mammalianized version of lactate oxidase (LOx) from Aerococcus viridans. LOx expression in astrocytes in vitro reduced their intracellular lactate levels as well as the release of lactate to the extracellular space. Selective expression of LOx in astrocytes of the dorsal hippocampus in mice resulted in increased locomotor activity in response to novel stimuli. Our findings suggest that a localized decreased intracellular lactate pool in hippocampal astrocytes could contribute to greater responsiveness to environmental novelty. We expect that use of this molecular tool to chronically limit astrocytic lactate release will significantly facilitate future studies into the roles and mechanisms of intercellular lactate communication in the brain.


Asunto(s)
Astrocitos , Hipocampo , Ácido Láctico , Animales , Ratones , Neuronas , Oxidación-Reducción
3.
Hum Mol Genet ; 29(17): 2936-2950, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32803234

RESUMEN

Our understanding of the contribution of genetic risk factors to neuropsychiatric diseases is limited to abnormal neurodevelopment and neuronal dysfunction. Much less is known about the mechanisms whereby risk variants could affect the physiology of glial cells. Our prior studies have shown that a mutant (dominant-negative) form of a rare but highly penetrant psychiatric risk factor, Disrupted-In-Schizophrenia-1 (DISC1), impairs metabolic functions of astrocytes and leads to cognitive dysfunction. In order to overcome the limitations of the mutant DISC1 model and understand the putative regional properties of astrocyte DISC1, we assessed whether knockdown of Disc1 (Disc1-KD) in mature mouse astrocytes of the prefrontal cortex (PFC) or the hippocampus would produce behavioral abnormalities that could be attributed to astrocyte bioenergetics. We found that Disc1-KD in the hippocampus but not PFC impaired trace fear conditioning in adult mice. Using the innovative deep learning approach and convolutional deep neural networks (cDNNs), ResNet50 or ResNet18, and single cell-based analysis, we found that Disc1-KD decreased the spatial density of astrocytes associated with abnormal levels and distribution of the mitochondrial markers and the glutamate transporter, GLAST. Disc1-KD in astrocytes also led to decreased expression of the glutamatergic and increased expression of the GABA-ergic synaptic markers, possibly via non-apoptotic activation of caspase 3 in neurons located within the individual territories of Disc1-KD astrocytes. Our results indicate that altered expression of DISC1 in astrocytes could impair astrocyte bioenergetics, leading to abnormalities in synaptic neurotransmission and cognitive function in a region-dependent fashion.


Asunto(s)
Encéfalo/metabolismo , Cognición/fisiología , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/patología , Mapeo Encefálico , Aprendizaje Profundo , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Red Nerviosa/patología , Neuroglía/metabolismo , Neuroglía/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología
4.
Biol Psychiatry ; 85(11): 891-903, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219209

RESUMEN

BACKGROUND: Although several studies have linked adolescent cannabis use to long-term cognitive dysfunction, there are negative reports as well. The fact that not all users develop cognitive impairment suggests a genetic vulnerability to adverse effects of cannabis, which are attributed to action of Δ9-tetrahydrocannabinol (Δ9-THC), a cannabis constituent and partial agonist of brain cannabinoid receptor 1. As both neurons and glial cells express cannabinoid receptor 1, genetic vulnerability could influence Δ9-THC-induced signaling in a cell type-specific manner. METHODS: Here we use an animal model of inducible expression of dominant-negative disrupted in schizophrenia 1 (DN-DISC1) selectively in astrocytes to evaluate the molecular mechanisms, whereby an astrocyte genetic vulnerability could interact with adolescent Δ9-THC exposure to impair recognition memory in adulthood. RESULTS: Selective expression of DN-DISC1 in astrocytes and adolescent treatment with Δ9-THC synergistically affected recognition memory in adult mice. Similar deficits in recognition memory were observed following knockdown of endogenous Disc1 in hippocampal astrocytes in mice treated with Δ9-THC during adolescence. At the molecular level, DN-DISC1 and Δ9-THC synergistically activated the nuclear factor-κB-cyclooxygenase-2 pathway in astrocytes and decreased immunoreactivity of parvalbumin-positive presynaptic inhibitory boutons around pyramidal neurons of the hippocampal CA3 area. The cognitive abnormalities were prevented in DN-DISC1 mice exposed to Δ9-THC by simultaneous adolescent treatment with the cyclooxygenase-2 inhibitor, NS398. CONCLUSIONS: Our data demonstrate that individual vulnerability to cannabis can be exclusively mediated by astrocytes. Results of this work suggest that genetic predisposition within astrocytes can exaggerate Δ9-THC-produced cognitive impairments via convergent inflammatory signaling, suggesting possible targets for preventing adverse effects of cannabis within susceptible individuals.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Dronabinol/efectos adversos , Memoria/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , Reconocimiento en Psicología/efectos de los fármacos , Factores de Edad , Animales , Astrocitos/metabolismo , Región CA3 Hipocampal/inmunología , Femenino , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/biosíntesis , Nitrobencenos/farmacología , Parvalbúminas/metabolismo , Terminales Presinápticos/efectos de los fármacos , Células Piramidales/inmunología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología
6.
Neuropsychopharmacology ; 42(11): 2242-2251, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28631721

RESUMEN

The functional role of genetic variants in glia in the pathogenesis of psychiatric disorders remains poorly studied. Disrupted-In-Schizophrenia 1 (DISC1), a genetic risk factor implicated in major mental disorders, has been implicated in regulation of astrocyte functions. As both astrocytes and DISC1 influence adult neurogenesis in the dentate gyrus (DG) of the hippocampus, we hypothesized that selective expression of dominant-negative C-terminus-truncated human DISC1 (mutant DISC1) in astrocytes would affect adult hippocampal neurogenesis and hippocampus-dependent behaviors. A series of behavioral tests were performed in mice with or without expression of mutant DISC1 in astrocytes during late postnatal development. In conjunction with behavioral tests, we evaluated adult neurogenesis, including neural progenitor proliferation and dendrite development of newborn neurons in the DG. The ameliorative effects of D-serine on mutant DISC1-associated behaviors and abnormal adult neurogenesis were also examined. Expression of mutant DISC1 in astrocytes decreased neural progenitor proliferation and dendrite growth of newborn neurons, and produced elevated anxiety, attenuated social behaviors, and impaired hippocampus-dependent learning and memory. Chronic treatment with D-serine ameliorated the behavioral alterations and rescued abnormal adult neurogenesis in mutant DISC1 mice. Our findings suggest that psychiatric genetic risk factors expressed in astrocytes could affect adult hippocampal neurogenesis and contribute to aspects of psychiatric disease through abnormal production of D-serine.


Asunto(s)
Astrocitos/metabolismo , Conducta Animal/fisiología , Hipocampo/citología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Animales , Animales Recién Nacidos , Ansiedad/tratamiento farmacológico , Ansiedad/genética , Ansiedad/patología , Astrocitos/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Serina/farmacología
7.
Neurobiol Dis ; 103: 144-153, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28392471

RESUMEN

In addition to motor function, the cerebellum has been implicated in cognitive and social behaviors. Various structural and functional abnormalities of Purkinje cells (PCs) have been observed in schizophrenia and autism. As PCs express the gene Disrupted-In-Schizophrenia-1 (DISC1), and DISC1 variants have been associated with neurodevelopmental disorders, we evaluated the role of DISC1 in cerebellar physiology and associated behaviors using a mouse model of inducible and selective expression of a dominant-negative, C-terminus truncated human DISC1 (mutant DISC1) in PCs. Mutant DISC1 male mice demonstrated impaired social and novel placement recognition. No group differences were found in novelty-induced hyperactivity, elevated plus maze test, spontaneous alternation, spatial recognition in Y maze, sociability or accelerated rotarod. Expression of mutant DISC1 was associated with a decreased number of large somata PCs (volume: 3000-5000µm3) and an increased number of smaller somata PCs (volume: 750-1000µm3) without affecting the total number of PCs or the volume of the cerebellum. Compared to control mice, attached loose patch recordings of PCs in mutant DISC1 mice revealed increased spontaneous firing of PCs; and whole cell recordings showed increased amplitude and frequency of mEPSCs without significant changes in either Rinput or parallel fiber EPSC paired-pulse ratio. Our findings indicate that mutant DISC1 alters the physiology of PCs, possibly leading to abnormal recognition memory in mice.


Asunto(s)
Disfunción Cognitiva/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Locomoción/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Células de Purkinje/metabolismo , Conducta Social , Animales , Disfunción Cognitiva/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética
8.
Brain Res ; 1642: 104-113, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27017957

RESUMEN

Memory reconsolidation processes and protein kinase Mzeta (PKMzeta) activity in memory maintenance and reorganization are poorly understood. Therefore, we examined memory reconsolidation and PKMzeta activity during the maintenance and reorganization of a conditioned food aversion memory among snails. These processes were specifically evaluated after administration of a serotonin receptor antagonist (methiothepin), NMDA glutamate receptor antagonist (MK-801), protein synthesis inhibitor (cycloheximide; CYH), or PKMzeta inhibitor (zeta inhibitory peptide; ZIP) either 2 or 10 days after aversion training. Two days post-training, injections of MK-801 or CYH, combined with a conditioned stimulus reminder, caused amnesia development, and a second training 11 days after this induction did not lead to long-term memory formation. Interestingly, MK-801 or CYH injections and the reminder 10 days after training did not affect memory retrieval. Methiothepin and the reminder, or ZIP without the reminder, at 2 and 10 days after training led to memory impairment, while a second training 11 days after amnesia induction resulted in memory formation. These results suggest that the maintenance of a conditioned food aversion involves two different components with variable dynamics. One component could be characterized by memory strengthening over time and involve N-methyl-D-aspartate receptors and protein synthesis reconsolidation at early, but not late, training stages. The other memory component could involve serotonin-dependent reconsolidation and Mzeta-like kinase activity at both early and late stages after learning. Deficiencies within these two components led to various forms of memory impairment, which differed in terms of the formation of a conditioned food aversion during the second training.


Asunto(s)
Condicionamiento Clásico/fisiología , Preferencias Alimentarias/fisiología , Consolidación de la Memoria/fisiología , Biosíntesis de Proteínas , Proteína Quinasa C/fisiología , Receptores de Serotonina/fisiología , Animales , Condicionamiento Clásico/efectos de los fármacos , Cicloheximida/administración & dosificación , Maleato de Dizocilpina/administración & dosificación , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Preferencias Alimentarias/efectos de los fármacos , Caracoles Helix , Consolidación de la Memoria/efectos de los fármacos , Metiotepina/administración & dosificación , Biosíntesis de Proteínas/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/fisiología , Antagonistas de la Serotonina/administración & dosificación
9.
Learn Behav ; 44(3): 250-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26742927

RESUMEN

Recent studies report that long-term memory retrieval can induce memory reconsolidation, and impairment of this reconsolidation might lead to amnesia. Previously, we found that reconsolidation of a conditioned food aversion memory could be disrupted by translation inhibitors for up to 3 h following a reconsolidation event, thus inducing amnesia. We examined the role of transcription processes in the induction of amnesia in the land snail, Helix lucorum. It received N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and transcription inhibitor 2 days after learning in a neutral context environment; it was then transferred to the learning context followed by reminder with conditioned food stimulus. NMDA receptor blockade, followed by a reminder session, impaired reconsolidation of an aversive memory. Simultaneous administration of an NMDA receptor antagonist and a transcription inhibitor prior to reminder of an aversive event prevented amnesia induction. In contrast, when a transcription inhibitor alone was injected prior to a reminder session, the blockade had no effect on memory. We found that transcription inhibition 0-6 h after amnesia induction suppressed memory loss, but this suppression was lost when inhibitors were administered 9 h after amnesia. Thus, amnesia is likely dependent on transcription processes within a 9-h time window. We can hypothesize that amnesia induction initiates synthesis of specific mRNAs and proteins; furthermore, these events occur within specific time-dependent windows. Our findings could prove useful for the analysis of amnesia formation and for the development of possible ways to prevent memory loss associated with various diseases and injuries in animals and humans.


Asunto(s)
Amnesia , Caracoles Helix , Memoria , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Memoria a Largo Plazo , N-Metilaspartato
10.
Rev Neurosci ; 25(2): 177-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24523305

RESUMEN

Recent studies have advanced our understanding of the role of the cerebellum in non-motor behaviors. Abnormalities in the cerebellar structure have been demonstrated to produce changes in emotional, cognitive, and social behaviors resembling clinical manifestations observed in patients with autism spectrum disorders (ASD) and schizophrenia. Several animal models have been used to evaluate the effects of relevant environmental and genetic risk factors on the cerebellum development and function. However, very few models of ASD and schizophrenia selectively target the cerebellum and/or specific cell types within this structure. In this review, we critically evaluate the strength and weaknesses of these models. We will propose that the future progress in this field will require time- and cell type-specific manipulations of disease-relevant genes, not only selectively in the cerebellum, but also in frontal brain areas connected with the cerebellum. Such information can advance our knowledge of the cerebellar contribution to non-motor behaviors in mental health and disease.


Asunto(s)
Cerebelo/anomalías , Trastornos Generalizados del Desarrollo Infantil/patología , Modelos Animales de Enfermedad , Animales , Niño , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...